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Abstract: In this paper, we have used generalized differential transform method in obtaining a general recurrence
relation for determining the solutions of time fractional diffusion equation with external force and absorbent term.
Diffusion equations play an improtant part in energy transfer problems. Inclusion of fractional derivatives bring the
non-locality aspect into the physical system containing this equation. The obtained relation will help us to solve
such equations with various external forces and initial conditions. Three illustrative examples have been discussed.
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1 Introduction
In recent years fractional calculus has been of tremen-
dous use in applied mathematical and engineering
problems. Oldham and Spanier [1] was the first to in-
troduce the subject in book level. Later on Miller and
Ross [2], Podlubny [3] was instrumental in develop-
ing the subject in solving fractional differential equa-
tions. Fractional differential equations, mainly diffu-
sion equations were rigorously studied in the nineties
[4]-[6]. In the present paper we focus our attention
in considering and finding solutions of the following
time fractional diffusion equation

∂βu(x, t)

∂tβ
= M

∂2u(x, t)

∂x2
− ∂

∂x
(F (x)u(x, t))

−
∫ t

0
λ(t− ξ)∂u(x, t)

∂x
dξ

(1)

where 0 < β ≤ 1, M,x, t > 0, with the initial condi-
tion

u(x, 0) = f(x) (2)

Here M is the diffusion coefficient, F (x) is the
external force, (t) is the time dependent absorbent
term which may be related to a reaction diffusion
process. Throughout this paper the unknown function
u(x, t) is considered to be a causal function of space
and time respectively.

There are several analytical methods present
for solving diffusion-wave equations of fractional

order. Most of these methods are applied in solving
time-fractional diffusion equations in presence of
external force only. Recently Das has used the
variational iteration method (VIM) to find the solu-
tion of a time-fractional diffusion equation of order
β = 1

2 in [7]. Saha Ray and Bera have used the
Adomain decomposition method (ADM) for the same
equation in [8]. Das further studied the solutions of
time-fractional diffusion equations for arbitrary order
β (0 < β ≤ 1 in [9] and used homotopy perturbation
method (HPM) for solving time-fractional diffusion
equation with external force and absorbent term in
[10].

In this paper the Generalized Differential Trans-
form Method (GDTM) is used to solve the fractional
diffusion equation problem in presence of a linear
external force and an absorbent term. Using the
initial condition, the approximate analytical expres-
sions of u(x, t) for different Brownian motions are
obtained. The concept of the differential transform
method (DTM) was first proposed by Zhou in [11]
while solving some linear and nonlinear electrical cir-
cuit problems. The generalized two-dimensional dif-
ferential transform method was first proposed by Mo-
mani et. al. in [12]. The main objective of this paper
is to give a general recurrence relation for obtaining
the solutions of Eq. (1) with the GDTM. This the first
study that this type of problem is solved by GDTM
for not only a given external force but also for a time
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dependent absorbent term. We shall show with exam-
ples, the effect of the reaction term in Eq. (1) with or
without the presence of the linear external force.

2 Mathematical preliminaries
There are several versions of fractional derivative of
order α > 0 . The two most widely used versions are
the Riemann-Liouville and Caputo, where both the
definitions use Riemann-Liouville fractional integral
and derivatives of whole order. Since in this paper we
have to deal with partial derivatives, the definitions
need to be presented in the partial differential sense.

Consider a function of two-variables u(x, y). The
Riemann-Liouville fractional partial integration of or-
der ν with respect to x is defined as

D−νx u(x, y) =
1

Γ(ν)

∫ x

0
(x− ξ)ν−1u(ξ, y)∂ξ (3)

where x > 0 and< ν ≤ 1, and the Riemann-Liouville
fractional partial derivative of order α with respect to
x is defined as

Dα
xu(x, y) =

∂m

∂xm
D−(m−α)
x u(x, y) (4)

where x > 0, < α ≤ 1 and m is a positive integer
such that m− 1 < α ≤ m.
The Caputo fractional partial derivative of order α
with respect to x is defined as

Dα
xu(x, y) = D−(m−α)

x

∂m

∂xm
u(x, y) (5)

where x > 0, < α ≤ 1 and m is a positive integer
such that m− 1 < α ≤ m.

The basic difference between the definitions is
that in Caputo’s definition we first compute the deriva-
tive followed by an integral whereas in Riemann-
Liouville’s definition the computation is reversed.
Therefore, in an initial value problem the Caputo frac-
tional derivative operator permits the initial condi-
tions in terms of integer ordered derivatives, but the
Riemann-Liouville fractional derivative operator per-
mits the initial conditions in terms of fractional in-
tegrals and their derivatives. In case of homoge-
neous initial condition, these two operators coincide.
Throughout this paper, as per our requirement in the
problem we shall consider the space and time frac-
tional partial derivatives of the causal function u(x, t)
in Caputo sense.

3 Generalized two-dimensional dif-
ferential transform method

Let us consider an analytic function of two variables
u(x, y) and suppose that it can be represented as a
product of two continuous single variable functions.
The function u(x, y) is presented in terms of a two-
dimensional infinite power series expansion

u(x, y) =
∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x− x0)kα(y − y0)hβ

(6)
where 0 < α, β ≤ 1 and Uα,β(k, h) is the generalized
differential transform (GDT) of u(x, y) also called the
spectrum of u(x, y). It is defined as follows:

Uα,β(k, h) =

1

Γ(αk + 1)Γ(βh+ 1)

[
(Dα

x )k
(
Dβ
y

)h
u(x, y)

]
(x0,y0)

(7)

where (Dα
x )k = Dα

xD
α
x ..D

α
x (k − times).

In usual notation of a function the lower case
u(x, y) will represent the original function while the
uppercase Uα,β(k, h) will denote the transformed
function. Some useful results of the generalized
two-dimensional differential transform method are
listed below.

Result 1. If u(x, y) = v(x, y) ± w(x, y), then
Uα,β(k, h) = Vα,β(k, h)±Wα,β(k, h).

Result 2. If u(x, y) = cv(x, y), then
Uα,β(k, h) = cVα,β(k, h), where c is any con-
stant.

Result 3. If u(x, y) = v(x, y)w(x, y), then
Uα,β(k, h) =

∑k
r=0

∑h
s=0 Vα,β(r, h − s)Wα,β(k −

r, s).

Result 4. If u(x, y) = (x − a)nα(y − b)mβ ,
then Uα,β(k, h) = δ(k − n)δ(h − m), where δ
represents the Dirac-delta function.

Result 5. If f(x) = xλh(x), where λ + 1 > 0
and h(x) has the generalized Taylor’s series expan-
sion h(X) =

∑∞
n=0 an(x − a)nα with radius of

convergence R > 0, 0 < α ≤ 1 . Then

aD
γ
xaD

β
xf(x) =a D

γ+β
x f(x)

For all x ∈ (0, R) if:
(a) β < λ+ 1 and α arbitrary

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.25 Santanu Banerjee, Sudeshna Banerjee

E-ISSN: 2224-2678 194 Volume 19, 2020



or
(b) β ≥ λ + 1, γ arbitrary, and ak = 0 for
k = 0, 1, ..m− 1, where m− 1 < β ≤ m.

Result 6. If u(x, y) = f(x)g(y) and f(x) sat-
isfies the conditions imposed in Theorem 5, then

Uα,β(k, h) =

1

Γ(αk + 1)Γ(βh+ 1)

[(
Dαk
x

)(
Dβh
y

)
u(x, y)

]
(x0,y0)

Result 7(i). If u(x, y)Dγ
xv(x, y), m − 1 < γ ≤ m

and v(x, y) = f(x)g(y) where f(x) satisfies the con-
ditions in Theorem 5, then

Uα,β(k, h) =
Γ(αk + γ + 1)

Γ(αk + 1)
Vα,β

(
k +

γ

α
, h
)

Result 7(ii). If u(x, y)Dγ
yv(x, y), m − 1 < γ ≤ m

and v(x, y) = f(x)g(y) where g(x) satisfies the con-
ditions in Theorem 5, then

Uα,β(k, h) =
Γ(βh+ γ + 1)

Γ(βh+ 1)
Vα,β

(
k, h+

γ

β

)

Result 8. If u(x, y) = Dγ
xD

µ
y v(x, y), m − 1 < γ ≤

m, n − 1 < µ ≤ n and v(x, y) = f(x)g(y), where
the functions f(x) and g(y) satisfy the conditions in
Theorem 5, then

Uα,β(k, h) =

Γ(αk + γ + 1)Γ(βh+ µ+ 1)

Γ(αk + 1)Γ(βh+ 1)
Vα,β

(
k +

γ

α
, h+

µ

β

)
The above results were due to some standard

deductions in GDTM. Now, we shall present the proof
of two important theorems on GDTM, eventually
using them in succeeding examples.

Theorem A1. If u(x, y) = D−γx Dµ
y v(x, y),

m − 1 < γ ≤ m, n − 1 < µ ≤ n and
v(x, y) = f(x)g(y), where the functions f(x)
and g(y) satisfy the conditions in Theorem 5, then

Uα,β(k, h) =

Γ(αk + µ+ 1)Γ(βh− γ + 1)

Γ(αk + 1)Γ(βh+ 1)
Vα,β

(
k +

µ

α
, h− γ

β

)
where k + µ

α ≥ 0, k + γ
β ≥ 0.

Proof. Using the generalized Taylor’s expansion of
f(x), g(y) and GDT we obtain,

u(x, y

= D−γx Dµ
y v(x, y)

∞∑
k=0

∞∑
h=0

Vα,β(k, h)(x−a)kα(y−b)hβ

=
∞∑
k=0

∞∑
k=0

D−γx Dµ
y

[
Vα,β(k, h)(x− a)kα(y − b)hβ

]

=

∞∑
k=0

∞∑
h=0

Vα,β(k, h)(x− a)kα−µ(y − b)hβ+γ

=

∞∑
k=0

∞∑
h=0

[
Γ(αk + 1)Γ(βh+ 1)

Γ(αk − µ+ 1)Γ(βh+ γ + 1)

×Vα,β(k, h)(x− a)kα−µ(y − b)hβ+γ

]

=

∞∑
k=− µ

α

∞∑
h= γ

β

Γ(αk + µ+ 1)Γ(βh− γ + 1)

Γ(αk + 1)Γ(βh+ 1)
Vα,β

(
k +

µ

α
, h− γ

β

)
(x−a)kα(y−b)hβ+γ

Hence from the definition of GDT we arrive at the
proof.

Theorem A2. If the external force F (x) be ex-
panded in Maclaurin’s series, F (x) =

∑∞
n=0 anx

n

with a radius of convergence R > 0 and the absorbent
term be represented as λ(t) = ηtγ−1

Λ(γ) , 0 < γ ≤ 1,
η > 0, then the GDT of Eq.(1) is

U1,β(k, h+ 1) =

Γ(βh+ 1)

Γ(βh+ β + 1)
(k + 1)

[
M(k + 2)U1,β(k + 2, h)

−
k+1∑
r=0

arU1,β(k − r + 1, h)

−ηΓ(βh− γ + 1)

Γ(βh+ 1)
U1,β

(
k + 1, h− γ

β

)]
(8)

Proof. Applying GDT to both sides of Eq.(1) and us-
ing Theorem A1 we obtain,

Γ(βh+ β + 1)

Γ(βh+ 1)
U1,β(k, h+ 1) =

M(k + 1)(k + 2)U1,β(k + 2, h)

−(k+1)
k+1∑
r=0

h∑
s=0

∞∑
n=0

anδ(r−n)δ(h−s)U1,β(k−r+1, s)

−η(k + 1)
Γ(βh− γ + 1)

Γ(βh+ 1)
U1,β

(
k + 1, h− γ

β

)
Considering the definition of the Dirac- function we
obtain the result.
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Furthermore, we can easily see that the GDT of 2) i.e.
of the initial condition u(x, 0) = f(x) is

U1,β(k, 0) =
1

k!

dkf

dxk
(9)

4 Numerical examples
Example 1. Taking F (x) = −x, λ = 0, M = 1,
f(x) = x i.e. in presence of only external force, we
get the following initial value problem:

Dβ
t u = D2

xu+D1
x(xu)

u(x, 0) = x
(10)

Since F (x) = −x , we have an =

{
−1, n = 1
0, n 6= 1

and

substituting f(x) = x in Eq.(9), we get

U1,β(k, 0) =

{
1, k = 1
0, k 6= 1

Then using the general recurrence relation (8), we get

U1,β(k, h) =

{
2h

Γ(hβ+1) , k = 1

0, k 6= 1

Hence, the solution of (10) is given by

u(x, t) = xEβ(2tβ)

where Ep =
∑

i = 0∞ ti

Γ(pi+1) , p > 0 is the Mittag-
Leffler function in one parameter.
The same result was been obtained by Das et al.
[10]. Also if we consider β = 1

2 , the solution is in
complete agreement with that obtained by Saha et al.
[8] and Das [7].

Example 2. Taking β = 1
2 , F (x) = −x, λ = 1,

M = 1, f(x) = x i.e. in presence of both linear ex-
ternal force and absorbent term, we get the following
initial value problem:

D
1
2
t u = D2

xu+D1
x(xu)−D−1

t D1
xu

u(x, 0) = x
(11)

Since F (x) = −x, we have an =

{
−1, n = 1
0, n 6= 1

and

substituting f(x) = x in Eq.(9), we get

U1, 1
2
(k, 0) =

{
1, k = 1
0, k 6= 1

Then using the general recurrence relation (5), we get

U1, 1
2
(k, h) =


2h−2−1
Γ(h2 +1)

, k = 0

2h−1
Γ(h2 +1)

, k = 1

0, k 6= 0, 1

Hence, the solution of (11) is given by

u(x, t) = xE 1
2

(
2t

1
2

)
− t

1
2E 1

2

(
Kt

1
2

)
where Kr = (2r − 1), r ∈ Z+ ∪ {0}.

Example 3. Taking β = 1
2 , F (x) = 0, λ = 1,

M = 0, f(x) = x i.e. in presence only the absorbent
term, we get the following initial value problem:

D
1
2
t u = D−1

t D1
xu

u(x, 0) = x
(12)

Using similar calculations as the above two examples
we get the solution of (12),

u(x, t) = x− t

5 Conclusion
In this article we have presented a general recurrence
relation for Eq.(1) along with the initial condition
(2) using GDTM. The usage of this method is more
simple and concise when compared to other existing
methods such as ADM, HPM, etc. The effect of the re-
action term on time-fractional diffusion equation with
or without the presence of external force has been an-
alyzed.
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